Connection between B lymphocyte and osteoclast differentiation pathways.

نویسندگان

  • N Manabe
  • H Kawaguchi
  • H Chikuda
  • C Miyaura
  • M Inada
  • R Nagai
  • Y Nabeshima
  • K Nakamura
  • A M Sinclair
  • R H Scheuermann
  • M Kuro-o
چکیده

Osteoclasts differentiate from the hemopoietic monocyte/macrophage cell lineage in bone marrow through cell-cell interactions between osteoclast progenitors and stromal/osteoblastic cells. Here we show another osteoclast differentiation pathway closely connected with B lymphocyte differentiation. Recently the TNF family molecule osteoclast differentiation factor/receptor activator of NF-kappaB ligand (ODF/RANKL) was identified as a key membrane-associated factor regulating osteoclast differentiation. We demonstrate that B-lymphoid lineage cells are a major source of endogenous ODF/RANKL in bone marrow and support osteoclast differentiation in vitro. In addition, B-lymphoid lineage cells in earlier developmental stages may hold a potential to differentiate into osteoclasts when stimulated with M-CSF and soluble ODF/RANKL in vitro. B-lymphoid lineage cells may participate in osteoclastogenesis in two ways: they 1) express ODF/RANKL to support osteoclast differentiation, and 2) serve themselves as osteoclast progenitors. Consistent with these observations in vitro, a decrease in osteoclasts is associated with a decrease in B-lymphoid cells in klotho mutant mice (KL(-/-)), a mouse model for human aging that exhibits reduced turnover during bone metabolism, rather than a decrease in the differentiation potential of osteoclast progenitors. Taken together, B-lymphoid lineage cells may affect the pathophysiology of bone disorders through regulating osteoclastogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulators of osteoclast differentiation and cell-cell fusion.

Osteoclasts are multinuclear giant cells derived from osteoclast/macrophage/dendritic cell common progenitor cells. The most characteristic feature of osteoclasts is multinucleation resulting from cell-cell fusion of mononuclear osteoclasts. Osteoclast cell-cell fusion is considered essential for re-organization of the cytoskeleton, such as the actin-ring and ruffled boa...

متن کامل

Blimp1-mediated repression of negative regulators is required for osteoclast differentiation.

Regulation of irreversible cell lineage commitment depends on a delicate balance between positive and negative regulators, which comprise a sophisticated network of transcription factors. Receptor activator of NF-kappaB ligand (RANKL) stimulates the differentiation of bone-resorbing osteoclasts through the induction of nuclear factor of activated T cells c1 (NFATc1), the essential transcription...

متن کامل

Inhibitory Effect of Purpurogallin on Osteoclast Differentiation In Vitro through the Downregulation of c-Fos and NFATc1

Purpurogallin, a benzotropolone-containing natural compound, has been reported to exhibit numerous biological and pharmacological functions, such as antioxidant, anticancer, and anti-inflammatory effects. In this study, we enzymatically synthesized purpurogallin from pyrogallol and investigated its role in receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis. Purpur...

متن کامل

Preliminary identification of potential PDZ-domain proteins downstream of ephrin B2 during osteoclast differentiation of RAW264.7 cells.

The EphB4 receptor and ephrin B2 ligand were recently reported to influence the coupling between osteoclasts and osteoblasts in bone biology, but their downstream signaling pathways remain unclear. This study focuses on the preliminary identification of downstream PDZ-domain proteins involved in EphB4/ephrin B2 reverse signaling in osteoclasts. Similarly to primary osteoclast precursors isolate...

متن کامل

Sirt6 cooperates with Blimp1 to positively regulate osteoclast differentiation

Global deletion of the gene encoding a nuclear histone deacetylase sirtuin 6 (Sirt6) in mice leads to osteopenia with a low bone turnover due to impaired bone formation. But whether Sirt6 regulates osteoclast differentiation is less clear. Here we show that Sirt6 functions as a transcriptional regulator to directly repress anti-osteoclastogenic gene expression. Targeted ablation of Sirt6 in hem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 167 5  شماره 

صفحات  -

تاریخ انتشار 2001